

Econ 453, Fall 2025, Research Project

DUE: December 10 at 11:59pm, on D2L

Brendan Cleary

Professor Cox

ECON 453

Study Question: *Predicting energy expenditures in commercial buildings*

Introduction/Background:

Predicting total energy consumption within buildings is often one of the most challenging tasks regarding commercial buildings. When buyers purchase large commercial properties, they often lack information on the energy costs that the building will incur. One of the biggest issues commercial real estate stakeholders have is the uncertainty around energy and utility costs, which is even more apparent in large scale buildings. Another important group is city officials, who need to know how a proposal development of a new building will demand energy and what impact it will have on the grid. This econometric model attempts to estimate and implement a more accurate view of energy costs within a perspective commercial building. This model can be used to predict the energy consumption of buildings and, by extension, predict the operational energy costs of a building.

Proposed Models & Hypotheses:

Empirical Model:

$$\begin{aligned} \ln(Energy Expenditure) &= \beta_0 + \beta_1 \ln(\text{Sqft.}) + \beta_2 \text{Age} + \beta_3 \text{Region} + \beta_4 \text{City} + \beta_5 \text{Use} + \beta_6 \text{Cert} + \beta_7 \text{Renov} \\ &+ \beta_8 (\text{Age} * \text{Cert1}) + \varepsilon \end{aligned}$$

- **Sqft.** is a numeric variable that measures the total amount of square footage for the building. This variable is logged because it is not an apples to apples comparison, a logarithmic variable captures this far better.
- **Age** is a numeric variable that measures the age of the building.
- **Region** is categorical variable that captures what region of the United States the building is in.
- **City** is a dummy variable which captures whether or not the building is located in a city
- **Use** is a categorical variable which captures the primary function of the building. Retail, office, industrial, multifamily, etc. This variable was originally named PBA (Principal Building Activity).
- **Renov** is a binary variable that captures whether a building has completed a renovation since 2000.
- **Age * Cert1** is an interaction variable which attempts to capture if green energy certifications offset building age.
- **ε** captures the unexplained noise and random variation within the model and is assumed to have zero conditional mean

The hypothesis from this model is that sq footage, age, and use will be the three mode important factors in predicting total energy expenditures for a commercial building. Having a positive effect and driving up total energy expenditures.

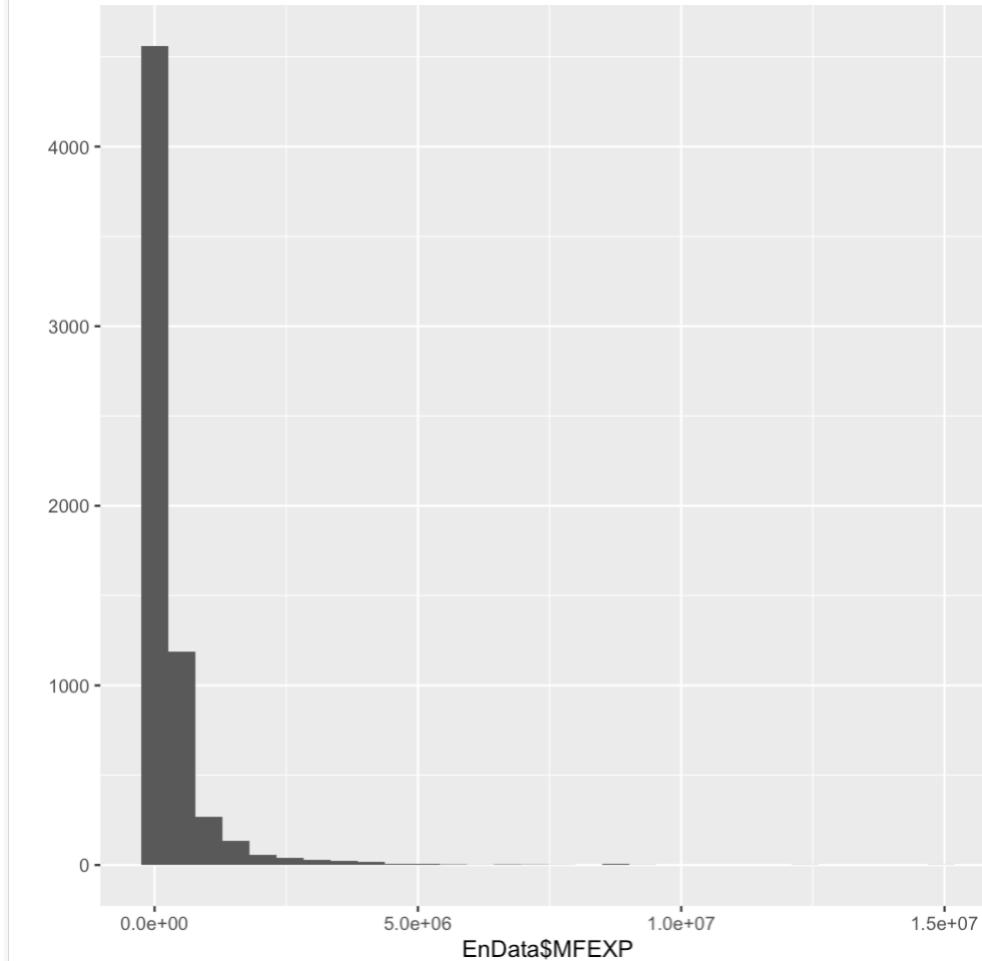
Data:

The dataset used in this project is a 2018 Commercial Building Energy Consumption Survey (CBECS). The report was compiled by the U.S. Energy Information Administration (EIA), a department of the U.S. Department of Energy. The survey estimates 5.9 million commercial buildings worth about \$141 billions of energy expenditure. The process that the CBECS uses is a random sample survey, where every commercial building has a known chance of being selected. They collect information in-person and through a web-survey.

Two key procedures were used in data cleaning and interpretation. The first task was renaming variables to be more interpretable. This was done by reading the codebook which are provided by CBECS. This spreadsheet includes a list of variable keys and a description of their meanings. The next step was renaming them in R. (E.g. PBA (Principal Building Activity) was renamed to Use, and others were also renamed). Second step was removing all variables that included blank or 0 variables, as they could have been having a big impact on the model.

Another step was generating a histogram to get a visual idea of the data:

Graph 1: Histogram



Empirical Methodology/Estimation Results:

Estimation Method:

OLS (Ordinary Least Squares) was used which minimizes the sum of squared residuals. The log-linear specification allows coefficients to be interpreted as a percentage changes. Additionally, hold-out validation was used to split the data and test.

Hypothesis Test

Two hypothesis tests were ran, with 95% and 99% confidence intervals.

The 95% CI with 6356 degrees of freedom yielded a t-statistic of 34.768 a p-value of <2.2e-16 and the interval from 292,065-326,968. With a sample mean of 309,517. Therefore, because our p-value < 0.05 we reject the null and can conclude that the mean energy expenditure lies between \$292,065-\$326,968 with 95% confidence.

Figure 1 95% Hypothesis Test:

One Sample t-test

```
data: EnData$MFEXP
t = 34.768, df = 6356, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
292065.2 326968.8
sample estimates:
mean of x
309517
```

The 99% CI with 6356 degrees of freedom yielded a t-statistic of 34.765 and a p-value of <2.2e-16. We get an interval of 286,578-332,455 with a sample mean of 309,517. Therefore, we can conclude that the sample mean lies between our interval with 99% confidence, and reject the null hypothesis.

Figure 2 99% Hypothesis Test:

One Sample t-test

```
data: EnData$MFEXP
t = 34.765, df = 6356, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 20
99 percent confidence interval:
286578.9 332455.1
sample estimates:
mean of x
309517
```

Estimation Results:

From our regression output, there are some notable findings. A 1% increase in shift increases energy expenditure by 0.96%, which is almost proportional. Inconsistent with assumptions, older buildings consume slightly (marginally) less energy each year. Buildings in city consume 17% more on energy, and consistent with assumptions building expenditure vary drastically by use.

Figure 3: Regression Output

```

Call:
lm(formula = ln_energy_exp ~ ln_sqft + age + region_south + city +
    use_category + cert1 + cert2 + RENOV + age:cert1, data = EnData_clean)

Residuals:
    Min      1Q  Median      3Q      Max
-4.9189 -0.3252  0.0220  0.3493  2.2950

Coefficients: (1 not defined because of singularities)
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.6319143  0.1241971 -5.088 3.81e-07 ***
ln_sqft       0.9564285  0.0077999 122.621 < 2e-16 ***
age          -0.0011626  0.0006338  -1.834  0.0667 .  
region_south  -0.1156758  0.0203703  -5.679 1.47e-08 ***
city          0.1737853  0.0195935   8.870 < 2e-16 ***
use_category2 1.3389687  0.0899239  14.890 < 2e-16 ***
use_category4 2.1353494  0.1222149  17.472 < 2e-16 ***
use_category5 0.5102079  0.0948431   5.379 7.96e-08 ***
use_category6 2.5653323  0.1277892  20.075 < 2e-16 ***
use_category7 1.3121556  0.1184008  11.082 < 2e-16 ***
use_category8 1.5677211  0.1028560  15.242 < 2e-16 ***
use_category11 1.9459635  0.2340417   8.315 < 2e-16 ***
use_category12 0.6261621  0.0998493   6.271 4.02e-10 ***
use_category13 1.3225944  0.0946188  13.978 < 2e-16 ***
use_category14 1.0172300  0.0912476  11.148 < 2e-16 ***
use_category15 2.5727412  0.1057482  24.329 < 2e-16 ***
use_category16 2.0693986  0.0966339  21.415 < 2e-16 ***
use_category17 1.6607350  0.1136208  14.616 < 2e-16 ***
use_category18 1.3934357  0.0942091  14.791 < 2e-16 ***
use_category23 1.7126281  0.1051474  16.288 < 2e-16 ***
use_category24 0.8140500  0.1389420   5.859 5.09e-09 ***
use_category25 1.3827386  0.0966065  14.313 < 2e-16 ***
use_category26 1.0816734  0.1018339  10.622 < 2e-16 ***
use_category91 2.1320920  0.1409322  15.128 < 2e-16 ***
cert1          0.3061775  0.0449298   6.815 1.11e-11 ***
cert2          0.0332065  0.0232333   1.429  0.1530  
RENOV          NA          NA          NA          NA      
age:cert1     -0.0012474  0.0008528  -1.463  0.1436  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5731 on 3515 degrees of freedom
Multiple R-squared:  0.9086,    Adjusted R-squared:  0.9079 
F-statistic: 1344 on 26 and 3515 DF,  p-value: < 2.2e-16

```

Model Diagnostics:

Our Adjusted R-Squared is 0.90. This model explain 90% of the variation in the dataset. Which is impressive. F-Statistic of 1344 ($p < 2.2e-16$) meaning the model is highly significant. Our residual Standard Error: 0.5731 on 3515 degrees of freedom

A second model was also used which removed variables City, cert1, age, and city.

Model 2:

$$\ln(\text{Energy Expenditure}) = \beta_0 + \beta_1 \ln(\text{Sqft.}) + \beta_2 \text{Age} + \beta_3 \text{Region} + \beta_4 \text{Use} + \beta_5 (\text{Age} * \text{Cert1}) + \varepsilon$$

Figure 4: Model Comparison Output Metrics:

Observations	3,542	3,542
R2	0.903	0.909
Adjusted R2	0.903	0.908
Residual Std. Error	0.589 (df = 3519)	0.573 (df = 3515)
F Statistic	1,495.672*** (df = 22; 3519)	1,343.693*** (df = 26; 3515)
Note:	*p<0.1; **p<0.05; ***p<0.01	

The first column is the first column (reduced) model, and second is the original. The original model had a higher adjusted R2 and lower residual Std. Error and thus, was selected.

Hold-Out Method & Holt Exponential Smoothing:

Hold-Out Method was performed using holt exponential smoothing. The optimized model performed better than the user model, With lower ME, RMSE, and MAE in the test set. The user model output indicates overfitting of the data.

Figure 5: Cross-Validation Error Metrics

```
> accuracy(forecast_user, actual_valid)
      ME      RMSE      MAE      MPE      MAPE      MASE      ACF1
Training set -0.002564464 2.087811 1.688920 -3.03182 15.69394 0.7806671 -0.09365676
Test set      5.814841792 6.126311 5.814842 48.53442 48.53442 2.6877863          NA
> accuracy(forecast_cmp, actual_valid)
      ME      RMSE      MAE      MPE      MAPE      MASE      ACF1
Training set 0.001501282 1.875656 1.523166 -3.00339 14.26933 0.7040510 -0.02505734
Test set      0.008431686 1.920387 1.586933 -3.06598 14.82865 0.7335257          NA
```

Conclusion/Implications:

This model and research provides an accurate assessment of assessing building energy consumption. This model can be used by a variety of stakeholders who wish to assess and predict energy consumptions. However, this model does have three big limitations. The first is that the CBECS is a single snapshot for 2018, the nature of building energy has changed and buildings have become more efficient. Secondly, there are many crude and broad variables. Renovations variable treats all renovations the same, city variable differs, and Cert variable does not include big green certification that the building may have. Endogeneity and omitted variable bias could also impact this model.

References:

AI, BrainBox. "Mastering Building Energy Efficiency: EUI and Energy Consumption."

Brainboxai.com, Brainbox AI, 17 July 2024, brainboxai.com/en/articles/mastering-building-energy-efficiency-eui-and-energy-consumption.

Bourdeau, Mathieu, et al. "Modeling and Forecasting Building Energy Consumption: A Review of Data-Driven Techniques." *Sustainable Cities and Society*, vol. 48, July 2019, p. 101533, <https://doi.org/10.1016/j.scs.2019.101533>. Accessed 5 Feb. 2022.

"Building Energy Use." U.S. General Services Administration, 2023, www.gsa.gov/governmentwide-initiatives/federal-highperformance-buildings/highperformance-building-clearinghouse/energy/building-energy-use.

EIA. "Energy Information Administration (EIA)- Commercial Buildings Energy Consumption Survey (CBECS)." *Eia.gov*, 2016, www.eia.gov/consumption/commercial/.

"How Much Energy Is Consumed in U.S. Residential and Commercial Buildings? - FAQ - U.S. Energy Information Administration (EIA)." *Eia.gov*, 2016, www.eia.gov/tools/faqs/faq.php?id=86&t=1.

R Code:

```
library(readxl)
library(scales)
library(ggplot2)
library(survey)
library(dplyr)
library(stargazer)
library(tidyr)
setwd("~/453 Project - CRE Energy Consumption")
EnData <- read_excel("/Users/brendancleary/Desktop/Projects:Documents/EnData.xlsx")
```

```

# Confidence Interval
t.test(EnData$MFEXP)

# Test the Null
t.test(EnData$MFEXP, mu=20, conf.level = 0.99)

# Eyeball check for accuracy
qplot(EnData$MFEXP, geom = "histogram")

#Clean Data
EnData_clean <- EnData %>%
  filter(MFEXP > 0, SQFT > 0, !is.na(YRCONC), !is.na(REGION), !is.na(PBA)) %>%
  mutate(
    ln_energy_exp = log(MFEXP),
    ln_sqft = log(SQFT),
    age = case_when(
      YRCONC == 2 ~ 88,
      YRCONC == 3 ~ 65.5,
      YRCONC == 4 ~ 53.5,
      YRCONC == 5 ~ 43.5,
      YRCONC == 6 ~ 33.5,
      YRCONC == 7 ~ 23.5,
      YRCONC == 8 ~ 12,
      YRCONC == 9 ~ 2.5,
      TRUE ~ NA_real_
    ),
    region_south = ifelse(REGION == 3, 1, 0),
    city = ifelse(CENDIV %in% c(2,5,9), 1, 0),
    use_category = factor(PBA),
    cert1 = ifelse(EMCS == 1, 1, 0),
    cert2 = ifelse(RENHVC == 1 | RENLGT == 1 | RENINS == 1, 1, 0),
    YRCONC_f = factor(YRCONC),
    REGION_f = factor(REGION)
  ) %>%
  drop_na(ln_energy_exp, ln_sqft, age, region_south, city, use_category, cert1, cert2)

# Model 1

model_full <- lm(ln_energy_exp ~ ln_sqft + age + region_south + city + use_category + cert1 + cert2 +
  age:cert1, data = EnData_clean)
summary(model_full)

# Model 2
model_reduced <- lm(ln_energy_exp ~ ln_sqft + region_south + use_category + cert2, data = EnData_clean)
summary(model_reduced)

# Compare R-squared values

```

```

cat("\nModel 1 (Full) - Adjusted R-squared:", summary(model_full)$adj.r.squared)
cat("\nModel 2 (Reduced) - Adjusted R-squared:", summary(model_reduced)$adj.r.squared)

# F-test
anova_test <- anova(model_reduced, model_full)
print(anova_test)

# Model Comparison Regression
stargazer(model_reduced, model_full,
           type = "text",
           title = "Model Comparison: Reduced vs Full Model",
           column.labels = c("Reduced Model", "Full Model"),
           dep.var.labels = "ln(Energy Expenditure)",
           out = "model_comparison.txt")

# Cross Validation/Hold Out Method
library(forecast)

# Training & validation sets
TData <- EnData_clean[1:2479, ]
VData <- EnData_clean[2480:3542, ]

# Training & validation time series
train_ts <- ts(EnData_clean$ln_energy_exp[1:2479], frequency = 1)
valid_ts <- ts(EnData_clean$ln_energy_exp[2480:3542], start = 2480, frequency = 1)

# Fit ETS models on training data
HUser <- ets(train_ts, model = "AAN", alpha = 0.2, beta = 0.1)
HCmp <- ets(train_ts, model = "AAN")

# Forecast
forecast_user <- forecast(HUser, h = 1063)
forecast_cmp <- forecast(HCmp, h = 1063)

# Validation
actual_valid <- EnData_clean$ln_energy_exp[2480:3542]

# Output
cat("\nUser-specified ETS Model:\n")
print(accuracy(forecast_user, actual_valid))
cat("\nAuto-fitted ETS Model:\n")
print(accuracy(forecast_cmp, actual_valid))

```

